In silico design of a polypeptide as a vaccine candidate in opposition to ascariasis

  • Institute for Well being Metrics and Analysis (IHME). GBD 2019 Trigger and Threat Abstract, vol. 393 http://www.healthdata.org/results/gbd_summaries/2019 (2020).

  • World Well being Group. Ending the Neglect to Attain the Sustainable Improvement Objectives: A Highway Map for Uncared for Tropical Ailments 2021–2030. (2020).

  • Kajero, O. T. et al. Co-infection of intestinal helminths in people and animals within the Philippines. Trans. R. Soc. Trop. Med. Hyg. 1, 002. https://doi.org/10.1093/trstmh/trac002 (2022).

    Article 

    Google Scholar
     

  • Thamsborg, S. M., Nejsum, P. & Mejer, H. Influence of Ascaris suum in livestock. In Ascaris: The Uncared for Parasite (ed. Holland, C.) 363–381 (Elsevier, 2013). https://doi.org/10.1016/B978-0-12-396978-1.00014-8.

    Chapter 

    Google Scholar
     

  • Dold, C. & Holland, C. V. Ascaris and ascariasis. Microb. Infect. 13, 632–637 (2011).

    Article 

    Google Scholar
     

  • Ásbjörnsdóttir, Okay. H., Means, A. R., Werkman, M. & Walson, J. L. Prospects for elimination of soil-transmitted helminths. Curr. Opin. Infect. Dis. 30, 1–10 (2017).

    Article 

    Google Scholar
     

  • Miller, L. A. et al. Ascariasis in people and pigs on small-scale farms, Maine, USA, 2010–2013. Emerg. Infect. Dis. J. 21, 332 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Easton, A. et al. Molecular proof of hybridization between pig and human Ascaris signifies an interbred species complicated infecting people. Elife 9, e61562 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krücken, J. et al. Diminished efficacy of albendazole in opposition to Ascaris lumbricoides in Rwandan schoolchildren. Int. J. Parasitol. Medicine Drug Resist. 7, 262–271 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Furtado, L. F. V. et al. First identification of the benzimidazole resistance-associated F200Y SNP within the beta-tubulin gene in Ascaris lumbricoides. PLoS ONE 14, e0224108 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zawawi, A. & Else, Okay. J. Soil-transmitted helminth vaccines: Are we getting nearer?. Entrance. Immunol. 11, 2426 (2020).

    Article 

    Google Scholar
     

  • Tsuji, N. et al. Intranasal immunization with recombinant Ascaris suum 14-kilodalton antigen coupled with cholera toxin B subunit induces protecting immunity to A. suum an infection in mice. Infect. Immun. 69, 7285–7292 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsuji, N. et al. Recombinant Ascaris 16-kilodalton protein-induced safety in opposition to Ascaris suum larval migration after intranasal vaccination in pigs. J. Infect. Dis. 190, 1812–1820 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Versteeg, L. et al. Protecting immunity elicited by the nematode-conserved As37 recombinant protein in opposition to Ascaris suum an infection. PLoS Negl. Trop. Dis. 14, e0008057 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Castro, J. C. et al. Vaccination with chimeric protein induces safety in murine mannequin in opposition to ascariasis. Vaccine 39, 394–401 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Chen, N. et al. Ascaris suum enolase is a possible vaccine candidate in opposition to ascariasis. Vaccine 30, 3478–3482 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gazzinelli-Guimarães, A. C. et al. IgG induced by vaccination with Ascaris suum extracts is protecting in opposition to an infection. Entrance. Immunol. 9, 25–35 (2018).

    Article 

    Google Scholar
     

  • Wei, J. et al. Yeast-expressed recombinant As16 protects mice in opposition to Ascaris suum an infection by means of induction of a Th2-skewed immune response. PLoS Negl. Trop. Dis. 11, 1–20 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Castro, J. C. et al. Bioaccessibility and oral immunization efficacy of a chimeric protein vaccine in opposition to Ascaris suum. Microb. Infect. 25, 105042. https://doi.org/10.1016/j.micinf.2022.105042 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Gazzinelli-Guimarães, A. C. et al. ASCVac-1, a multi-peptide chimeric vaccine, protects mice in opposition to Ascaris suum an infection. Entrance. Immunol. 12, 5318 (2021).

    Article 

    Google Scholar
     

  • City, J. F. J. & Tromba, F. G. An ultraviolet-attenuated egg vaccine for swine ascariasis: Parameters affecting the event of protecting immunity. Am. J. Vet. Res. 45, 2104–2108 (1984).

    PubMed 

    Google Scholar
     

  • Turner, J. D. et al. Th2 cytokines are related to diminished worm burdens in a human intestinal helminth an infection. J. Infect. Dis. 188, 1768–1775 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harris, N. & Gause, W. C. To B or to not B: B cells and the Th2-type immune response to helminths. Developments Immunol. 32, 80–88 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nogueira, D. S. et al. Eosinophils mediate SIgA manufacturing triggered by TLR2 and TLR4 to regulate Ascaris suum an infection in mice. PLOS Pathog. 17, e1010067 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Masure, D. et al. A task for eosinophils within the intestinal immunity in opposition to infective Ascaris suum larvae. PLoS Negl. Trop. Dis. 7, e2138 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Masure, D. et al. The intestinal expulsion of the roundworm Ascaris suum is related to eosinophils, intra-epithelial T cells and decreased intestinal transit time. PLoS Negl. Trop. Dis. 7, e2588 (2013).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coakley, G. et al. Immune serum–activated human macrophages coordinate with eosinophils to immobilize Ascaris suum larvae. Parasite Immunol. 42, e12728 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gazzinelli-Guimarães, A. C., Gazzinelli-Guimarães, P. & Weatherhead, J. E. A historic and systematic overview of Ascaris vaccine improvement. Parasitology 148, 1795–1805 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Lafferty, E. I., Qureshi, S. T. & Schnare, M. The function of toll-like receptors in acute and power lung irritation. J. Inflamm. 7, 57 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Aguirre-García, M. M., Rojas-Bernabé, A., Gómez-García, A. P. & Escalona-Montaño, A. R. TLR-mediated host immune response to parasitic infectious ailments. In Toll-like Receptors (ed. Rezaei, N.) (IntechOpen, 2020). https://doi.org/10.5772/intechopen.84679.

    Chapter 

    Google Scholar
     

  • Oliveira, L. M. et al. Genetic background impacts the mucosal secretory IgA ranges, parasite burden, lung irritation, and mouse susceptibility to Ascaris suum an infection. Infect. Immun. 90, e00595-e621 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vlaminck, J. et al. Group charges of IgG4 antibodies to Ascaris haemoglobin mirror modifications in neighborhood egg hundreds following mass drug administration. PLoS Negl. Trop. Dis. 10, e0004532–e0004532 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsuji, N. et al. Mice intranasally immunized with a recombinant 16-kilodalton antigen from roundworm Ascaris parasites are protected in opposition to larval migration of Ascaris suum. Infect. Immun. 71, 5314–5323 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McSharry, C., Xia, Y., Holland, C. V. & Kennedy, M. W. Pure immunity to Ascaris lumbricoides related to immunoglobulin E antibody to ABA-1 allergen and irritation indicators in kids. Infect. Immun. 67, 484–489 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vlaminck, J. et al. Immunizing pigs with Ascaris suum haemoglobin will increase the inflammatory response within the liver however fails to induce a protecting immunity. Parasite Immunol. 33, 250–254 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Magalhães, L. et al. Immunological underpinnings of Ascaris an infection, reinfection and co-infection and their related co-morbidities. Parasitology 148, 1764–1773 (2021).

    Article 

    Google Scholar
     

  • Weatherhead, J. E. et al. Host immunity and irritation to pulmonary helminth infections. Entrance. Immunol. 11, 594520 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yantiss, R. Okay. Eosinophils within the GI tract: What number of is just too many and what do they imply?. Mod. Pathol. 28, S7–S21 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Singh, A., Thakur, M., Sharma, L. Okay. & Chandra, Okay. Designing a multi-epitope peptide primarily based vaccine in opposition to SARS-CoV-2. Sci. Rep. 10, 16219 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bibi, S. et al. In silico evaluation of epitope-based vaccine candidate in opposition to tuberculosis utilizing reverse vaccinology. Sci. Rep. 11, 1–16 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Sanches, R. C. O. et al. Immunoinformatics design of multi-epitope peptide-based vaccine in opposition to Schistosoma mansoni utilizing transmembrane proteins as a goal. Entrance. Immunol. 12, 490 (2021).

    Article 

    Google Scholar
     

  • Shey, R. A. et al. In-silico design of a multi-epitope vaccine candidate in opposition to onchocerciasis and associated filarial ailments. Sci. Rep. 9, 4409 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Evangelista, F. M. D., van Vliet, A. H. M., Lawton, S. P. & Betson, M. A reverse vaccinology strategy identifies putative vaccination targets within the zoonotic nematode Ascaris. Entrance. Vet. Sci. https://doi.org/10.3389/fvets.2022.1014198 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Howe, Okay. L., Bolt, B. J., Shafie, M., Kersey, P. & Berriman, M. WormBase ParaSite: A complete useful resource for helminth genomics. Mol. Biochem. Parasitol. 215, 2–10 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fleri, W. et al. The immune epitope database and evaluation useful resource in epitope discovery and artificial vaccine design. Entrance. Immunol. 8, 278 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Greenbaum, J. et al. Practical classification of sophistication II human leukocyte antigen (HLA) molecules reveals seven completely different supertypes and a shocking diploma of repertoire sharing throughout supertypes. Immunogenetics 63, 325–335 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dhanda, S. Okay., Gupta, S., Vir, P. & Raghava, G. P. S. Prediction of IL4 inducing peptides. Clin. Dev. Immunol. 2013, 263952 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nagpal, G. et al. Pc-aided designing of immunosuppressive peptides primarily based on IL-10 inducing potential. Sci. Rep. 7, 42851 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jespersen, M. C., Peters, B., Nielsen, M. & Marcatili, P. BepiPred-20: Enhancing sequence-based B-cell epitope prediction utilizing conformational epitopes. Nucleic Acids Res. 45, W24–W29 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kadam, Okay. et al. Antibody class(es) predictor for epitopes (AbCPE): A multi-label classification algorithm. Entrance. Bioinform. 1, 709951 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dimitrov, I., Bangov, I., Flower, D. R. & Doytchinova, I. AllerTOP vol 2: A server for in silico prediction of allergens. J. Mol. Mannequin. 20, 2278 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Gupta, S. et al. Peptide toxicity prediction BT. In Computational Peptidology (eds Zhou, P. & Huang, J.) 143–157 (Springer, 2015). https://doi.org/10.1007/978-1-4939-2285-7_7.

    Chapter 

    Google Scholar
     

  • Wu, C. H. et al. The protein info useful resource. Nucleic Acids Res. 31, 345–347 (2003).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, X., Zaro, J. L. & Shen, W.-C. Fusion protein linkers: Property, design and performance. Adv. Drug Deliv. Rev. 65, 1357–1369 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shanmugam, A. et al. Artificial Toll like receptor-4 (TLR-4) agonist peptides as a novel class of adjuvants. PLoS ONE 7, e30839–e30839 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Magnan, C. N. et al. Excessive-throughput prediction of protein antigenicity utilizing protein microarray information. Bioinformatics 26, 2936–2943 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Doytchinova, I. A. & Flower, D. R. VaxiJen: A server for prediction of protecting antigens, tumour antigens and subunit vaccines. BMC Bioinform. 8, 4 (2007).

    Article 

    Google Scholar
     

  • Dimitrov, I., Naneva, L., Doytchinova, I. & Bangov, I. AllergenFP: Allergenicity prediction by descriptor fingerprints. Bioinformatics 30, 846–851 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Bui, H.-H. et al. Predicting inhabitants protection of T-cell epitope-based diagnostics and vaccines. BMC Bioinform. 7, 153 (2006).

    Article 

    Google Scholar
     

  • Rapin, N., Lund, O., Bernaschi, M. & Castiglione, F. Computational immunology meets bioinformatics: Using prediction instruments for molecular binding within the simulation of the immune system. PLoS ONE 5, e9862 (2010).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ebner, F. et al. CD4+ Th immunogenicity of the Ascaris spp. secreted merchandise. NPJ Vaccines 5, 25 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gasteiger, E. et al. Protein identification and evaluation instruments on the ExPASy server. In The Proteomics Protocols Handbook (ed. Walker, J. M.) 571–607 (Humana Press, 2005). https://doi.org/10.1385/1-59259-890-0:571.

    Chapter 

    Google Scholar
     

  • Magnan, C. N., Randall, A. & Baldi, P. SOLpro: Correct sequence-based prediction of protein solubility. Bioinformatics 25, 2200–2207 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Buchan, D. W. A. & Jones, D. T. The PSIPRED protein evaluation workbench: 20 years on. Nucleic Acids Res. 47, W402–W407 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, S., Li, W., Liu, S. & Xu, J. RaptorX-Property: An internet server for protein construction property prediction. Nucleic Acids Res. 44, W430–W435 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grote, A. et al. JCat: A novel device to adapt codon utilization of a goal gene to its potential expression host. Nucleic Acids Res. 33, W526–W531 (2005).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, J. Distance-based protein folding powered by deep studying. Proc. Natl. Acad. Sci. 116, 16856–16865 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heo, L., Park, H. & Seok, C. GalaxyRefine: Protein construction refinement pushed by side-chain repacking. Nucleic Acids Res. 41, W384–W388 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hou, J., Wu, T., Cao, R. & Cheng, J. Protein tertiary construction modeling pushed by deep studying and get in touch with distance prediction in CASP13. Proteins Struct. Funct. Bioinform. 87, 1165–1178 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Learn, R. J., Sammito, M. D., Kryshtafovych, A. & Croll, T. I. Analysis of mannequin refinement in CASP13. Proteins Struct. Funct. Bioinform. 87, 1249–1262 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Wiederstein, M. & Sippl, M. J. ProSA-web: Interactive net service for the popularity of errors in three-dimensional buildings of proteins. Nucleic Acids Res. 35, W407–W410 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laskowski, R. A., MacArthur, M. W., Moss, D. S. & Thornton, J. M. PROCHECK: A program to test the stereochemical high quality of protein buildings. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article 
    CAS 

    Google Scholar
     

  • Colovos, C. & Yeates, T. O. Verification of protein buildings: Patterns of nonbonded atomic interactions. Protein Sci. 2, 1511–1519 (1993).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lüthy, R., Bowie, J. U. & Eisenberg, D. Evaluation of protein fashions with three-dimensional profiles. Nature 356, 83–85 (1992).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Pontius, J., Richelle, J. & Wodak, S. J. Deviations from commonplace atomic volumes as a high quality measure for protein crystal buildings. J. Mol. Biol. 264, 121–136 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barlow, D. J., Edwards, M. S. & Thornton, J. M. Steady and discontinuous protein antigenic determinants. Nature 322, 747–748 (1986).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ponomarenko, J. et al. ElliPro: A brand new structure-based device for the prediction of antibody epitopes. BMC Bioinform. 9, 514 (2008).

    Article 

    Google Scholar
     

  • Kozakov, D. et al. The ClusPro net server for protein–protein docking. Nat. Protoc. 12, 255–278 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Su, L. et al. Structural foundation of TLR2/TLR1 activation by the artificial agonist diprovocim. J. Med. Chem. 62, 2938–2949 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ohto, U., Yamakawa, N., Akashi-Takamura, S., Miyake, Okay. & Shimizu, T. Structural analyses of human toll-like receptor 4 polymorphisms D299G and T399I*. J. Biol. Chem. 287, 40611–40617 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xue, L. C., Rodrigues, J. P., Kastritis, P. L., Bonvin, A. M. & Vangone, A. PRODIGY: An internet server for predicting the binding affinity of protein–protein complexes. Bioinformatics 32, 3676–3678 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Laskowski, R. A. & Swindells, M. B. LigPlot+: A number of ligand–protein interplay diagrams for drug discovery. J. Chem. Inf. Mannequin. 51, 2778–2786 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • López-Blanco, J. R., Aliaga, J. I., Quintana-Ortí, E. S. & Chacón, P. iMODS: Inner coordinates regular mode evaluation server. Nucleic Acids Res. 42, W271–W276 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, J. et al. Comparative genome evaluation of programmed DNA elimination in nematodes. Genome Res. 27, 2001–2014 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kyte, J. & Doolittle, R. F. A easy methodology for displaying the hydropathic character of a protein. J. Mol. Biol. 157, 105–132 (1982).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ikai, A. Thermostability and aliphatic index of globular proteins. J. Biochem. 88, 1895–1898 (1980).

    CAS 
    PubMed 

    Google Scholar
     

  • Midday, J. B. & Aroian, R. V. Recombinant subunit vaccines for soil-transmitted helminths. Parasitology 144, 1845–1870 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Kaur, R. et al. Immunoinformatics pushed development of multi-epitope vaccine candidate in opposition to Ascaris lumbricoides utilizing its complete immunogenic epitopes. Knowledgeable Rev. Vaccines 1, 1–13. https://doi.org/10.1080/14760584.2021.1974298 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Sadaow, L. et al. Molecular identification of Ascaris lumbricoides and Ascaris suum recovered from people and pigs in Thailand, Lao PDR, and Myanmar. Parasitol. Res. 117, 2427–2436 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Katakam, Okay. Okay., Thamsborg, S. M., Dalsgaard, A., Kyvsgaard, N. C. & Mejer, H. Environmental contamination and transmission of Ascaris suum in Danish natural pig farms. Parasit. Vectors 9, 80 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garamszegi, L. Z. & Nunn, C. L. Parasite-mediated evolution of the useful a part of the MHC in primates. J. Evol. Biol. 24, 184–195 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zaini, A., Good-Jacobson, Okay. L. & Zaph, C. Context-dependent roles of B cells throughout intestinal helminth an infection. PLoS Negl. Trop. Dis. 15, e0009340 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arai, R., Ueda, H., Kitayama, A., Kamiya, N. & Nagamune, T. Design of the linkers which successfully separate domains of a bifunctional fusion protein. Protein Eng. Des. Sel. 14, 529–532 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Coler, R. N. et al. An artificial adjuvant to boost and develop immune responses to influenza vaccines. PLoS ONE 5, e13677 (2010).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rehman, A. et al. Built-in core proteomics, subtractive proteomics, and immunoinformatics investigation to unveil a possible multi-epitope vaccine in opposition to schistosomiasis. Vaccines 9, 658 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhatwa, A. et al. Challenges related to the formation of recombinant protein inclusion our bodies in Escherichia coli and methods to deal with them for industrial functions. Entrance. Bioeng. Biotechnol. 9, 65 (2021).

    Article 

    Google Scholar
     

  • Corradin, G., Villard, V. & Kajava, A. V. Protein construction primarily based methods for antigen discovery and vaccine improvement in opposition to malaria and different pathogens. Endocr. Metab. Immune Disord. Drug Targets 7, 259–265 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arumugam, S. & Varamballi, P. In-silico design of envelope primarily based multi-epitope vaccine candidate in opposition to Kyasanur forest illness virus. Sci. Rep. 11, 17118 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Source link

    Add a Comment

    Your email address will not be published. Required fields are marked *