In silico design of a polypeptide as a vaccine candidate in opposition to ascariasis
Institute for Well being Metrics and Analysis (IHME). GBD 2019 Trigger and Threat Abstract, vol. 393 http://www.healthdata.org/results/gbd_summaries/2019 (2020).
World Well being Group. Ending the Neglect to Attain the Sustainable Improvement Objectives: A Highway Map for Uncared for Tropical Ailments 2021–2030. (2020).
Kajero, O. T. et al. Co-infection of intestinal helminths in people and animals within the Philippines. Trans. R. Soc. Trop. Med. Hyg. 1, 002. https://doi.org/10.1093/trstmh/trac002 (2022).
Thamsborg, S. M., Nejsum, P. & Mejer, H. Influence of Ascaris suum in livestock. In Ascaris: The Uncared for Parasite (ed. Holland, C.) 363–381 (Elsevier, 2013). https://doi.org/10.1016/B978-0-12-396978-1.00014-8.
Dold, C. & Holland, C. V. Ascaris and ascariasis. Microb. Infect. 13, 632–637 (2011).
Ásbjörnsdóttir, Okay. H., Means, A. R., Werkman, M. & Walson, J. L. Prospects for elimination of soil-transmitted helminths. Curr. Opin. Infect. Dis. 30, 1–10 (2017).
Miller, L. A. et al. Ascariasis in people and pigs on small-scale farms, Maine, USA, 2010–2013. Emerg. Infect. Dis. J. 21, 332 (2015).
Easton, A. et al. Molecular proof of hybridization between pig and human Ascaris signifies an interbred species complicated infecting people. Elife 9, e61562 (2020).
Krücken, J. et al. Diminished efficacy of albendazole in opposition to Ascaris lumbricoides in Rwandan schoolchildren. Int. J. Parasitol. Medicine Drug Resist. 7, 262–271 (2017).
Furtado, L. F. V. et al. First identification of the benzimidazole resistance-associated F200Y SNP within the beta-tubulin gene in Ascaris lumbricoides. PLoS ONE 14, e0224108 (2019).
Zawawi, A. & Else, Okay. J. Soil-transmitted helminth vaccines: Are we getting nearer?. Entrance. Immunol. 11, 2426 (2020).
Tsuji, N. et al. Intranasal immunization with recombinant Ascaris suum 14-kilodalton antigen coupled with cholera toxin B subunit induces protecting immunity to A. suum an infection in mice. Infect. Immun. 69, 7285–7292 (2001).
Tsuji, N. et al. Recombinant Ascaris 16-kilodalton protein-induced safety in opposition to Ascaris suum larval migration after intranasal vaccination in pigs. J. Infect. Dis. 190, 1812–1820 (2004).
Versteeg, L. et al. Protecting immunity elicited by the nematode-conserved As37 recombinant protein in opposition to Ascaris suum an infection. PLoS Negl. Trop. Dis. 14, e0008057 (2020).
de Castro, J. C. et al. Vaccination with chimeric protein induces safety in murine mannequin in opposition to ascariasis. Vaccine 39, 394–401 (2021).
Chen, N. et al. Ascaris suum enolase is a possible vaccine candidate in opposition to ascariasis. Vaccine 30, 3478–3482 (2012).
Gazzinelli-Guimarães, A. C. et al. IgG induced by vaccination with Ascaris suum extracts is protecting in opposition to an infection. Entrance. Immunol. 9, 25–35 (2018).
Wei, J. et al. Yeast-expressed recombinant As16 protects mice in opposition to Ascaris suum an infection by means of induction of a Th2-skewed immune response. PLoS Negl. Trop. Dis. 11, 1–20 (2017).
Castro, J. C. et al. Bioaccessibility and oral immunization efficacy of a chimeric protein vaccine in opposition to Ascaris suum. Microb. Infect. 25, 105042. https://doi.org/10.1016/j.micinf.2022.105042 (2022).
Gazzinelli-Guimarães, A. C. et al. ASCVac-1, a multi-peptide chimeric vaccine, protects mice in opposition to Ascaris suum an infection. Entrance. Immunol. 12, 5318 (2021).
City, J. F. J. & Tromba, F. G. An ultraviolet-attenuated egg vaccine for swine ascariasis: Parameters affecting the event of protecting immunity. Am. J. Vet. Res. 45, 2104–2108 (1984).
Turner, J. D. et al. Th2 cytokines are related to diminished worm burdens in a human intestinal helminth an infection. J. Infect. Dis. 188, 1768–1775 (2003).
Harris, N. & Gause, W. C. To B or to not B: B cells and the Th2-type immune response to helminths. Developments Immunol. 32, 80–88 (2011).
Nogueira, D. S. et al. Eosinophils mediate SIgA manufacturing triggered by TLR2 and TLR4 to regulate Ascaris suum an infection in mice. PLOS Pathog. 17, e1010067 (2021).
Masure, D. et al. A task for eosinophils within the intestinal immunity in opposition to infective Ascaris suum larvae. PLoS Negl. Trop. Dis. 7, e2138 (2013).
Masure, D. et al. The intestinal expulsion of the roundworm Ascaris suum is related to eosinophils, intra-epithelial T cells and decreased intestinal transit time. PLoS Negl. Trop. Dis. 7, e2588 (2013).
Coakley, G. et al. Immune serum–activated human macrophages coordinate with eosinophils to immobilize Ascaris suum larvae. Parasite Immunol. 42, e12728 (2020).
Gazzinelli-Guimarães, A. C., Gazzinelli-Guimarães, P. & Weatherhead, J. E. A historic and systematic overview of Ascaris vaccine improvement. Parasitology 148, 1795–1805 (2021).
Lafferty, E. I., Qureshi, S. T. & Schnare, M. The function of toll-like receptors in acute and power lung irritation. J. Inflamm. 7, 57 (2010).
Aguirre-García, M. M., Rojas-Bernabé, A., Gómez-García, A. P. & Escalona-Montaño, A. R. TLR-mediated host immune response to parasitic infectious ailments. In Toll-like Receptors (ed. Rezaei, N.) (IntechOpen, 2020). https://doi.org/10.5772/intechopen.84679.
Oliveira, L. M. et al. Genetic background impacts the mucosal secretory IgA ranges, parasite burden, lung irritation, and mouse susceptibility to Ascaris suum an infection. Infect. Immun. 90, e00595-e621 (2022).
Vlaminck, J. et al. Group charges of IgG4 antibodies to Ascaris haemoglobin mirror modifications in neighborhood egg hundreds following mass drug administration. PLoS Negl. Trop. Dis. 10, e0004532–e0004532 (2016).
Tsuji, N. et al. Mice intranasally immunized with a recombinant 16-kilodalton antigen from roundworm Ascaris parasites are protected in opposition to larval migration of Ascaris suum. Infect. Immun. 71, 5314–5323 (2003).
McSharry, C., Xia, Y., Holland, C. V. & Kennedy, M. W. Pure immunity to Ascaris lumbricoides related to immunoglobulin E antibody to ABA-1 allergen and irritation indicators in kids. Infect. Immun. 67, 484–489 (1999).
Vlaminck, J. et al. Immunizing pigs with Ascaris suum haemoglobin will increase the inflammatory response within the liver however fails to induce a protecting immunity. Parasite Immunol. 33, 250–254 (2011).
Magalhães, L. et al. Immunological underpinnings of Ascaris an infection, reinfection and co-infection and their related co-morbidities. Parasitology 148, 1764–1773 (2021).
Weatherhead, J. E. et al. Host immunity and irritation to pulmonary helminth infections. Entrance. Immunol. 11, 594520 (2020).
Yantiss, R. Okay. Eosinophils within the GI tract: What number of is just too many and what do they imply?. Mod. Pathol. 28, S7–S21 (2015).
Singh, A., Thakur, M., Sharma, L. Okay. & Chandra, Okay. Designing a multi-epitope peptide primarily based vaccine in opposition to SARS-CoV-2. Sci. Rep. 10, 16219 (2020).
Bibi, S. et al. In silico evaluation of epitope-based vaccine candidate in opposition to tuberculosis utilizing reverse vaccinology. Sci. Rep. 11, 1–16 (2021).
Sanches, R. C. O. et al. Immunoinformatics design of multi-epitope peptide-based vaccine in opposition to Schistosoma mansoni utilizing transmembrane proteins as a goal. Entrance. Immunol. 12, 490 (2021).
Shey, R. A. et al. In-silico design of a multi-epitope vaccine candidate in opposition to onchocerciasis and associated filarial ailments. Sci. Rep. 9, 4409 (2019).
Evangelista, F. M. D., van Vliet, A. H. M., Lawton, S. P. & Betson, M. A reverse vaccinology strategy identifies putative vaccination targets within the zoonotic nematode Ascaris. Entrance. Vet. Sci. https://doi.org/10.3389/fvets.2022.1014198 (2022).
Howe, Okay. L., Bolt, B. J., Shafie, M., Kersey, P. & Berriman, M. WormBase ParaSite: A complete useful resource for helminth genomics. Mol. Biochem. Parasitol. 215, 2–10 (2017).
Fleri, W. et al. The immune epitope database and evaluation useful resource in epitope discovery and artificial vaccine design. Entrance. Immunol. 8, 278 (2017).
Greenbaum, J. et al. Practical classification of sophistication II human leukocyte antigen (HLA) molecules reveals seven completely different supertypes and a shocking diploma of repertoire sharing throughout supertypes. Immunogenetics 63, 325–335 (2011).
Dhanda, S. Okay., Gupta, S., Vir, P. & Raghava, G. P. S. Prediction of IL4 inducing peptides. Clin. Dev. Immunol. 2013, 263952 (2013).
Nagpal, G. et al. Pc-aided designing of immunosuppressive peptides primarily based on IL-10 inducing potential. Sci. Rep. 7, 42851 (2017).
Jespersen, M. C., Peters, B., Nielsen, M. & Marcatili, P. BepiPred-20: Enhancing sequence-based B-cell epitope prediction utilizing conformational epitopes. Nucleic Acids Res. 45, W24–W29 (2017).
Kadam, Okay. et al. Antibody class(es) predictor for epitopes (AbCPE): A multi-label classification algorithm. Entrance. Bioinform. 1, 709951 (2021).
Dimitrov, I., Bangov, I., Flower, D. R. & Doytchinova, I. AllerTOP vol 2: A server for in silico prediction of allergens. J. Mol. Mannequin. 20, 2278 (2014).
Gupta, S. et al. Peptide toxicity prediction BT. In Computational Peptidology (eds Zhou, P. & Huang, J.) 143–157 (Springer, 2015). https://doi.org/10.1007/978-1-4939-2285-7_7.
Wu, C. H. et al. The protein info useful resource. Nucleic Acids Res. 31, 345–347 (2003).
Chen, X., Zaro, J. L. & Shen, W.-C. Fusion protein linkers: Property, design and performance. Adv. Drug Deliv. Rev. 65, 1357–1369 (2013).
Shanmugam, A. et al. Artificial Toll like receptor-4 (TLR-4) agonist peptides as a novel class of adjuvants. PLoS ONE 7, e30839–e30839 (2012).
Magnan, C. N. et al. Excessive-throughput prediction of protein antigenicity utilizing protein microarray information. Bioinformatics 26, 2936–2943 (2010).
Doytchinova, I. A. & Flower, D. R. VaxiJen: A server for prediction of protecting antigens, tumour antigens and subunit vaccines. BMC Bioinform. 8, 4 (2007).
Dimitrov, I., Naneva, L., Doytchinova, I. & Bangov, I. AllergenFP: Allergenicity prediction by descriptor fingerprints. Bioinformatics 30, 846–851 (2013).
Bui, H.-H. et al. Predicting inhabitants protection of T-cell epitope-based diagnostics and vaccines. BMC Bioinform. 7, 153 (2006).
Rapin, N., Lund, O., Bernaschi, M. & Castiglione, F. Computational immunology meets bioinformatics: Using prediction instruments for molecular binding within the simulation of the immune system. PLoS ONE 5, e9862 (2010).
Ebner, F. et al. CD4+ Th immunogenicity of the Ascaris spp. secreted merchandise. NPJ Vaccines 5, 25 (2020).
Gasteiger, E. et al. Protein identification and evaluation instruments on the ExPASy server. In The Proteomics Protocols Handbook (ed. Walker, J. M.) 571–607 (Humana Press, 2005). https://doi.org/10.1385/1-59259-890-0:571.
Magnan, C. N., Randall, A. & Baldi, P. SOLpro: Correct sequence-based prediction of protein solubility. Bioinformatics 25, 2200–2207 (2009).
Buchan, D. W. A. & Jones, D. T. The PSIPRED protein evaluation workbench: 20 years on. Nucleic Acids Res. 47, W402–W407 (2019).
Wang, S., Li, W., Liu, S. & Xu, J. RaptorX-Property: An internet server for protein construction property prediction. Nucleic Acids Res. 44, W430–W435 (2016).
Grote, A. et al. JCat: A novel device to adapt codon utilization of a goal gene to its potential expression host. Nucleic Acids Res. 33, W526–W531 (2005).
Xu, J. Distance-based protein folding powered by deep studying. Proc. Natl. Acad. Sci. 116, 16856–16865 (2019).
Heo, L., Park, H. & Seok, C. GalaxyRefine: Protein construction refinement pushed by side-chain repacking. Nucleic Acids Res. 41, W384–W388 (2013).
Hou, J., Wu, T., Cao, R. & Cheng, J. Protein tertiary construction modeling pushed by deep studying and get in touch with distance prediction in CASP13. Proteins Struct. Funct. Bioinform. 87, 1165–1178 (2019).
Learn, R. J., Sammito, M. D., Kryshtafovych, A. & Croll, T. I. Analysis of mannequin refinement in CASP13. Proteins Struct. Funct. Bioinform. 87, 1249–1262 (2019).
Wiederstein, M. & Sippl, M. J. ProSA-web: Interactive net service for the popularity of errors in three-dimensional buildings of proteins. Nucleic Acids Res. 35, W407–W410 (2007).
Laskowski, R. A., MacArthur, M. W., Moss, D. S. & Thornton, J. M. PROCHECK: A program to test the stereochemical high quality of protein buildings. J. Appl. Crystallogr. 26, 283–291 (1993).
Colovos, C. & Yeates, T. O. Verification of protein buildings: Patterns of nonbonded atomic interactions. Protein Sci. 2, 1511–1519 (1993).
Lüthy, R., Bowie, J. U. & Eisenberg, D. Evaluation of protein fashions with three-dimensional profiles. Nature 356, 83–85 (1992).
Pontius, J., Richelle, J. & Wodak, S. J. Deviations from commonplace atomic volumes as a high quality measure for protein crystal buildings. J. Mol. Biol. 264, 121–136 (1996).
Barlow, D. J., Edwards, M. S. & Thornton, J. M. Steady and discontinuous protein antigenic determinants. Nature 322, 747–748 (1986).
Ponomarenko, J. et al. ElliPro: A brand new structure-based device for the prediction of antibody epitopes. BMC Bioinform. 9, 514 (2008).
Kozakov, D. et al. The ClusPro net server for protein–protein docking. Nat. Protoc. 12, 255–278 (2017).
Su, L. et al. Structural foundation of TLR2/TLR1 activation by the artificial agonist diprovocim. J. Med. Chem. 62, 2938–2949 (2019).
Ohto, U., Yamakawa, N., Akashi-Takamura, S., Miyake, Okay. & Shimizu, T. Structural analyses of human toll-like receptor 4 polymorphisms D299G and T399I*. J. Biol. Chem. 287, 40611–40617 (2012).
Xue, L. C., Rodrigues, J. P., Kastritis, P. L., Bonvin, A. M. & Vangone, A. PRODIGY: An internet server for predicting the binding affinity of protein–protein complexes. Bioinformatics 32, 3676–3678 (2016).
Laskowski, R. A. & Swindells, M. B. LigPlot+: A number of ligand–protein interplay diagrams for drug discovery. J. Chem. Inf. Mannequin. 51, 2778–2786 (2011).
López-Blanco, J. R., Aliaga, J. I., Quintana-Ortí, E. S. & Chacón, P. iMODS: Inner coordinates regular mode evaluation server. Nucleic Acids Res. 42, W271–W276 (2014).
Wang, J. et al. Comparative genome evaluation of programmed DNA elimination in nematodes. Genome Res. 27, 2001–2014 (2017).
Kyte, J. & Doolittle, R. F. A easy methodology for displaying the hydropathic character of a protein. J. Mol. Biol. 157, 105–132 (1982).
Ikai, A. Thermostability and aliphatic index of globular proteins. J. Biochem. 88, 1895–1898 (1980).
Midday, J. B. & Aroian, R. V. Recombinant subunit vaccines for soil-transmitted helminths. Parasitology 144, 1845–1870 (2017).
Kaur, R. et al. Immunoinformatics pushed development of multi-epitope vaccine candidate in opposition to Ascaris lumbricoides utilizing its complete immunogenic epitopes. Knowledgeable Rev. Vaccines 1, 1–13. https://doi.org/10.1080/14760584.2021.1974298 (2021).
Sadaow, L. et al. Molecular identification of Ascaris lumbricoides and Ascaris suum recovered from people and pigs in Thailand, Lao PDR, and Myanmar. Parasitol. Res. 117, 2427–2436 (2018).
Katakam, Okay. Okay., Thamsborg, S. M., Dalsgaard, A., Kyvsgaard, N. C. & Mejer, H. Environmental contamination and transmission of Ascaris suum in Danish natural pig farms. Parasit. Vectors 9, 80 (2016).
Garamszegi, L. Z. & Nunn, C. L. Parasite-mediated evolution of the useful a part of the MHC in primates. J. Evol. Biol. 24, 184–195 (2011).
Zaini, A., Good-Jacobson, Okay. L. & Zaph, C. Context-dependent roles of B cells throughout intestinal helminth an infection. PLoS Negl. Trop. Dis. 15, e0009340 (2021).
Arai, R., Ueda, H., Kitayama, A., Kamiya, N. & Nagamune, T. Design of the linkers which successfully separate domains of a bifunctional fusion protein. Protein Eng. Des. Sel. 14, 529–532 (2001).
Coler, R. N. et al. An artificial adjuvant to boost and develop immune responses to influenza vaccines. PLoS ONE 5, e13677 (2010).
Rehman, A. et al. Built-in core proteomics, subtractive proteomics, and immunoinformatics investigation to unveil a possible multi-epitope vaccine in opposition to schistosomiasis. Vaccines 9, 658 (2021).
Bhatwa, A. et al. Challenges related to the formation of recombinant protein inclusion our bodies in Escherichia coli and methods to deal with them for industrial functions. Entrance. Bioeng. Biotechnol. 9, 65 (2021).
Corradin, G., Villard, V. & Kajava, A. V. Protein construction primarily based methods for antigen discovery and vaccine improvement in opposition to malaria and different pathogens. Endocr. Metab. Immune Disord. Drug Targets 7, 259–265 (2007).
Arumugam, S. & Varamballi, P. In-silico design of envelope primarily based multi-epitope vaccine candidate in opposition to Kyasanur forest illness virus. Sci. Rep. 11, 17118 (2021).
Source link